

Welcome to Melissi Server’s documentation!

Installing

To host your own melissi server (aka Hive)

Melissi is a cloud storage server written in Django. Each server is
called a Hive.

Ultimattely the hives will be able to communicate with each other,
forming a federated network of cloud storage servers. You will have
control of your data and your infrastracture and still be able to
share files with others, even if they live in different hives.

If you want can host your own hive and be the master of you data and
your infrastracture, then this document is for you.

If you just want a place to store your data then you can use a hive
controlled by someone else. You can join a hive controlled by your
friends, your university or your company.

Things To Know

1. Melissi server is currently alpha software. Things may and will
change drastically, as the project evolves and matures.

2. You shouldn’t trust melissi to backup your data. Melissi is a
storage platform not a backup platform.

3. If things go bad, or you get stuck feel free to ping us at
@melissiproject [http://www.twitter.com/melissiproject], or
#melissiproject on freenode.

4. Please fill bug reports on github [https://github.com/melissiproject/server/issues], the more the bug
reports and better the software will be.

Preparing You System

To install your own hive:

	Make sure you have a recent Python installed.

Most distributions come with python preinstalled, so probably you need
to do nothing. Check if you have python using the following command

~$ python --version

	Install virtualenv and pip

Virtualenv creates a virtual python environment, in which we will
install melissi and all its dependencies (e.g. Django). This way
your melissi installation won’t conflict with any other python
projects / installs you may have on your server. PIP is a package
manager for python.

	For Debian systems:

~$ sudo apt-get install python-pip python-virtualenv

	For Fedora system:

~$ su -c "yum install python-pip python-virtualenv"

	Install git

We use git to version our code. To get the latest melissi source
code you need to install git.

	For Debian systems:

~$ sudo apt-get install git

	For Fedora systems:

~$ su -c "yum install git"

	Install librsync

To reduce bandwidth needs librsync is used for calculating
patches. You need to install librsync development libraries to
build python-librsync module.

	For Debian systems:

~$ sudo apt-get install librsync-dev

	For Fedora systems:

~$ su -c "yum install librsync-devel"

	Install Extra Packages (Optional)

Because we are building melissi inside a virtual enviroment you
will need to download some extra packages to be able to compile
some python modules, such as the MySQL-python

	Mysql on Debian Systems

Install python development files, needed to build python mysql
connector:

~$ sudo apt-get install python-dev

Install MySQL:

~$ sudo apt-get install mysql-server libmysqlclient-dev

	PostgreSQL on Debian Systems

Install python and postgresql development files, needed to build
python postgresql connector:

~$ sudo apt-get install python-dev

Install PostgreSQL:

~$ sudo apt-get install postgresql libpq-dev

	Mysql on Fedora

Install python development files, needed to build python mysql
connector:

~$ su -c "yum install python-devel"

Install MySQL:

~$ su -c "yum install mysql-server mysql-devel"

	PosteSQL on Fedora

Install python and postgresql development files, needed to build
python postgresql connector:

~$ su -c "yum install python-devel"

Install PostgreSQL:

~$ su -c "yum install postgresql-server postgresql-devel"

Getting Melissi Source

You can get the source from our git repository.

	Move to the directory you want to install melissi:

~$ mkdir /srv/melissi
~$ cd /srv/melissi

	Fetch the source code:

~$ git clone git://github.com/melissiproject/server.git

Installing Melissi

Move to the directory you cloned melissi server and run the
melissi-installer. Melissi installer will download from pypi [http://pypi.python.org] all the needed python packages to run
melissi.

~$ cd /srv/melissi/server
~$./scripts/melissi-installer.py --install

Note

It is recomended that you use melissi with a good database
backend like MySQL or PostgreSQL. Do install the needed support
you can should use the –mysql and / or –postgresql flags among
the –install flag.

~$./scripts/melissi-install.py --install --mysql

If no flags are used then your hive will be able to run only
using sqlite.

Warning

To install the mysql or postesql backends you need to execute
the steps in section extra-packages

Configuring Your Hive

Before running your hive you need to configure at least the database
settings and the storage path. All configuration options are located
in file local_settings.py.

	Copy settings template

~$ cp local_settings.py.example local_settings.py

	Edit using you favorite editor local_settings.py

	Set DATABASES

This is the database to be used for melisi. You can refer to
Django’s documentation on Databases [https://docs.djangoproject.com/en/dev/ref/settings/#databases]
if you need more help.

Note

When using MySQL or PostgreSQL you need to create a database
first. You also need to grant permissions to your database
user to access the database

Use mysqladmin command to create MySQL databases

~$ mysqladmin -u root -p create melissi

	Set SECRET_KEY

A random secret key used as a seed in secret-key hashing
algorithms. For more see Django’s documentation on SECRET_KEY [https://docs.djangoproject.com/en/dev/ref/settings/#secret-key]

	Set MELISSI_STORE_LOCATION

Point to a directory to store uploaded data to.

Note

Since this directory is going to store the data from all user
of your hive make sure that you save enough storage for
everything.

	Set MELISSI_REGISTRATIONS_OPEN (Default: False)

Set either to True or False if you want or not other to be
able to create accounts on your hive.

	Setup the database:

~$ source env/bin/activate
(env)~$ python manage.py syncdb
(env)~$ python manage.py migrate mlscommon

Warning

When executing syncdb answer no to the question whether to
create a superuser or not, or the setup will fail.

	Setup a superuser

(env)~$ python manage.py createsuperuser

Running Your Hive

Test Setup: Using internal webserver

You can run your hive in test mode using django’s internal webserver.

(env)~$ python manage.py runserver

Note

Your hive listens by default on localhost:8000. To listen to
another port or interface you can execute runserver command
with extra parameters

(env)~$ python manage.py runserver 0.0.0.0:8000

bind to all available interfaces on port 8000

Warning

The communication between your hive and clients will not be
encrypted.

Now you can visit your administration interface at
http://localhost:8000/admin/ and login using your superuser
account.

Real Setup: Nginx and Gunicorn

	Install and Setup Gunicorn

Copying from Gunicorn’s [http://gunicorn.org] website:

‘Green Unicorn’ is a Python WSGI HTTP Server for UNIX. It’s a
pre-fork worker model ported from Ruby’s Unicorn project. The
Gunicorn server is broadly compatible with various web frameworks,
simply implemented, light on server resources, and fairly speedy.

	Install:

~$ cd /path/you/installed/melissi
~$./scripts/melissi-installer.py --install --gunicorn

	Setup

Edit /path/you/installed/melissi/scripts/gunicorn.sh to fit
your needs and paths.

	Install and Setup Nginx

	Install

	For Debian systems:

~$ sudo apt-get install nginx

	For Fedora system:

~$ su -c "yum install nginx"

	Setup with SSL (recommended)

	Generate an SSL certificate:

Note

If you have a certificate already you can skip this
step. Make sure that you set correctly the paths in the
next step so nginx can locate your certificate

~$ sudo -s
~# cd /etc/nginx
~# sudo mkdir /etc/nginx/ssl
~# cd ssl

create private key
~# openssl genrsa -des3 -out melissi.key 1024

create a CSR (Certificate Signing Request)
~# openssl req -new -key melissi.key -out melissi.csr

optionally remove th passphrase from you key
so nginx can start without a password
~# cp melissi.key melissi.key.bah
~# openssl rsa -in melissi.key.bak -out melissi.key

create a CRT
~# openssl x509 -req -days 365 -in melissi.csr -signkey melissi.key -out melissi.crt

Now your key and self-signed certificated are located in:

/etc/nginx/ssl/melissi.key
/etc/nginx/ssl/melissi.crt

	Create /etc/nginx/sites-availables/melissi with the following contents:

upstream app_server_melissi {
 # should match your paths
 server unix:///srv/melissi/sockets/melissi.sock fail_timeout=0;
}

server {
 server_name example.com;
 listen *:8000 default ssl;

 ssl_certificate ssl/melissi.crt;
 ssl_certificate_key ssl/melissi.key;

 # should match your paths
 access_log /srv/melissi/logs/nginx.access.log;
 error_log /srv/melissi/logs/nginx.error.log;

 # set this to the maximum file size allowed in your hive
 client_max_body_size 100m;

 location /static/admin/ {
 # should match your paths
 alias /srv/melissi/server/env/lib/python2.6/site-packages/django/contrib/admin/media/;
 expires 30d;
 add_header Cache-Control public;
 }

 location /storage/ {
 internal;
 # should match your paths
 alias /srv/storage/;
 }

 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Protocol ssl;
 proxy_redirect off;
 proxy_pass http://app_server_melissi;
 }
}

	Setup without SSL (not recommended)

Warning

The communication between your clients and the server will
be unecrypted. Your passwords and data will be viewable by
others.

Create /etc/nginx/sites-availables/melissi with the following contents:

upstream app_server_melissi {
 # should match your paths
 server unix:///srv/melissi/sockets/melissi.sock fail_timeout=0;
}

server {
 server_name example.com;
 listen *:8000;

 # should match your paths
 access_log /srv/melissi/logs/nginx.access.log;
 error_log /srv/melissi/logs/nginx.error.log;

 # set this to the maximum file size allowed in your hive
 client_max_body_size 100m;

 location /static/admin/ {
 # should match your paths
 alias /srv/melissi/server/env/lib/python2.6/site-packages/django/contrib/admin/media/;
 expires 30d;
 add_header Cache-Control public;
 }

 # /storage will be used in melissi configuration
 location /storage/ {
 internal;
 # should match your paths
 alias /srv/storage/;
 }

 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_pass http://app_server_melissi;
 }
}

	Enable the site:

~$ sudo ln -s /etc/nginx/sites-available/melissi ln -s /etc/nginx/sites-enabled/melissi

	Check configuration:

~$ sudo /etc/init.d/nginx configtest

	Install and Setup Supervisor

	Install:

~$ sudo apt-get install supervisor

	Setup

Create /etc/supervisor/conf.d/melissi.conf with the following contents:

[program:melissi]
directory = /srv/melissi/server/melisi/
user = melissi
command = /srv/melissi/server/scripts/gunicorn.sh
autostart=true
autorestart=true
redirect_stderr=True

Warning

Make sure that the paths match your installation

	Load new config

~$ sudo /etc/init.d/supervisor force-reload

	Configure your Hive

Some configuration is needed so that your Hive can take advantage
of Nginx’s X-Accel-Redirect [http://wiki.nginx.org/XSendfile]
directive.

Open local_settings.py and set:

SENDFILE='accel-redirect'
ACCEL_REDIRECT_PATH='/storage' # or whichever value you used in your nginx configuration

	Start services:

~$ sudo supervisorctl start melissi
~$ sudo /etc/init.d/nginx reload

	Enjoy your hive!

Updating Your Hive

	Update the source

~$ cd /path/you/installed/melissi
~$./scripts/melissi-installer.py --upgrade

	If first step completes without errors, when run the install
script, to download new packages

~$./scripts/melissi-install.py --install

	Synchronize and migrate database

~$ source env/bin/activate

(env)~$ cd melisi
(env)~$ python manage.py syncdb
(env)~$ python manage.py migrate mlscommon

	Restart your server

Hive Administration

Things To Know

Adding and Removing Users

You can use Django’s Admin [http://localhost:8000/admin] with you
superuser account to add and remove users.

Index

 nav.xhtml

 Table of Contents

 		Welcome to Melissi Server's documentation!

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

